I am industrious. I’m a decent welder, even when engulfed in flames from the waist down. I’ve swapped transmissions on a drifting racer, and I’ve been timed changing tires. I know the size and composition of a screw or nut just by looking at it. Machines talk to me. I have used a laser. I’ve been known to fix machines that have been deemed irreparable. I can type 1000 words of high quality English prose in an hour. I routinely work 16 hour shifts. I know how to pick a lock, break into a car, and steal second base. I’ve been called an artist. I can predict the next notes in a song that I’ve never heard. I can draw a perfectly straight line and a perfectly round circle. I know how to play instruments that you haven’t heard of. I have posed as a model. My style is unique. I have performed an entire concert when pulled from the audience without looking at the music. I improvise on improvisations. I have carved wood into amazing shapes using only a pocketknife. My culinary creations dazzle taste buds, and have never nor will ever appear in a cookbook. I can hold my breath for over two minutes. I swim against the current. My feats of strength are discussed at weekly meetings. I’m immune to poison ivy. I have been radioactive. I can run with scissors. I can make a 50 yard field goal. I’ve been given awards for my hugs. I render many speechless. I have saved a life. Mentally, I’m definitively above average. I intuitively know the answer to complex problems. I read at 3000 words per minute. I have never lost a game of chess. I count cards. I understand foreign languages.

In other words, I am a Rodman Scholar.

2010 Rodman Scholars Annual Newsletter
Dedicated to the principle that ‘from those to whom great gifts are given, much is expected’, the Rodman Scholars at the University of Virginia seek to serve their community, both local and global, the University and the engineering profession. Through the Rodman Scholars Program, the School of Engineering and Applied Science is dedicated to helping exceptionally talented undergraduate students reach their full potential as engineering leaders. This dual purpose is served largely through a combination of proven curricular offerings, experiential learning opportunities, and the relative autonomy Scholars have to organize themselves, and to decide how they will leverage their own energy and talents and the support provided by the Engineering School.

The Rodman Scholars Program, founded in 1983, was named to honor Walter Sheldon Rodman, a revered engineering scholar and teacher, and Dean of the Engineering School from 1931 through 1946. From its beginning, the Rodman program has offered coursework and experiential learning during the first year to encourage and cultivate innovation and leadership in engineering, and to develop a broader perspective on the role of the engineer. A first year residential program, in which Rodman and Echols (College of Arts and Sciences) Scholars share on-Grounds housing, serves to further cross-disciplinary perspective and shared opportunities to experience and shape University life. Evening seminars, on topics chosen by Scholars, and intended to provide informal learning opportunities, have also been a part of the program from its inception.

The current Rodman Scholars Program offers more than ever. A new international program, supported through a grant from Volkswagen Group of America, teams Scholars with engineering students from the Technical University of Braunschweig, Germany, during an intensive, two-week summer program. The program, known as Global Ingenuity 21, uses the model of a ‘think tank’ to immerse participants in a cross-cultural engineering design challenge. Rodman Scholars have recently created an eminent speaker series, open to the entire University community, intended to highlight great engineering and its benefits to society. Scholars have provided funding for undergraduate research projects in sustainable engineering and are working with LEAP, a local non-profit, to provide free home energy audits and advice on improving home energy efficiency. These are just a few examples of the ways in which Rodman Scholars are engaging with the world of engineering and the life of the University.

Students selected for the Rodman Scholars Program are typically in the 99th percentile among all U.S. high school graduates. But while many Scholars are class valedictorians, or have published their own research, outstanding academic ability is only part of who they are; they are also driven to make a difference. Through passion, innovation and energy, those selected for the program have shown exceptional potential for leadership. It may have been the creation of a non-profit organization, service in leadership roles in academic, sports, or other organizations, or the inspiration of others to reach higher; either way, it is the use of knowledge, skills and energy, not merely their possession, that distinguishes the Rodman Scholar. As director, it is my privilege to work with those currently in the program, and one of my top priorities to reconnect with our alumni. If you are a Rodman Program alumnus, I invite you to get in touch by responding to one of our surveys, or by sending me an e-mail (elzey@virginia.edu) with your name and current mailing address.

Dana Elzey
Program Director, 2004-present
Passion is the first word that comes to mind when we think of a Rodman Scholar. Each scholar comes to U.Va. with different talents, interests, and experiences, but each comes with a passion. A passion for knowledge, a passion to innovate, a passion to build, or a passion to change the world. It is the ongoing goal of the Rodman Scholars program to further develop these passions and create the engineering leaders of tomorrow. The Rodman Program has continued to see great growth in the breadth of research, design, exploration, and leadership development opportunities. We’d like to take this moment to highlight just a few aspects of the Rodman program, but we hope that you will further explore both this newsletter and our new website (http://www.seas.virginia.edu/students/rodmans/) to get a feel for the broad range of pursuits and opportunities within the current Rodman program and see how much this program is continuing to grow and change.

This past year the Rodman program received a generous grant of $50,000 from Lockheed Martin to focus on projects relating to sustainability. The projects that stemmed from this grant included the development of green playground technology, a lecture series focused on “Engineering a Sustainable World,” a series of research grants open to projects throughout the engineering school, a research fair to promote the research endeavors of Rodmans across the class years, and RodSquad, a home energy audit team.

The Rodman program also established a new study abroad program in conjunction with Volkswagen. This past summer 17 Rodmans traveled to Braunschweig, Dresden, and Berlin, Germany with Program Director Dana Elzey to work in a think tank with six German students. The project entailed working on a real-world problem given by the Volkswagen group’s Electronic Research Lab. The program was a huge success and the students took back from it not only a great experience working for a real client, but also in working across cultural boundaries and visiting academic, industrial, and tourist sites all over the country. The program will be continued in the coming years also, and we also plan to start more initiatives like this in the coming years.

We have also started a new outreach effort to re-engage alumni in the program. Over the next few weeks, we will be calling all of the alumni of the program. With a 23-year-old program, there are now over 700 alumni living and working all around the world. We want to give you a better feel of the activities, passions and goals of current scholars. However, we also want to know what you all are doing, and look forward to talking to you. We recognize that with over 700 alumni there is a wealth of knowledge and experience accumulated over the years, and we hope that alumni will keep in touch to help us shape the future of the Rodman Program. With this in mind, please let us know anytime that you make your way back to Charlottesville. We want to hear about what you are doing now and about your experiences while at U.Va. We welcome presentations to our current scholars about your business, your research, or any other defining moments of your life. If you would simply like to get lunch with a scholar and catch up on the program, we would also love to set up that opportunity.

We are excited about the continued potential for growth in the Rodman Program as well as continuing the hallmarks that have served the program so well. ’

Looking forward to hearing from you.
Best regards,

Kelly Anderson and Manya Garg (BME ‘12 and ChE ‘12)
Rodman Council Co-Presidents
We balanced our canteens of instant coffee carefully and tried to keep our heads from hitting the van’s roof as we crawled slowly over roads lined with pot-holes and vendors selling row after row of sweet potatoes. As we passed by, the local villagers waved to the “makuas” (strange white people) with welcoming smiles.

Our Jefferson Public Citizen’s research team, a combination of 4th year Systems Capstone students and 1st year students, had flown into South Africa earlier that week to spend the month of June in the villages of Tshapasha and Tshibvumo in the Limpopo Province addressing issues of poor water quality and sickness as a part of the Water and Health in Limpopo (WHIL) team. The Jefferson Public Citizen’s research team, a combination of 4th year Systems Capstone students and 1st year students, had flown into South Africa earlier that week to spend the month of June in the villages of Tshapasha and Tshibvumo in the Limpopo Province addressing issues of poor water quality and sickness as a part of the Water and Health in Limpopo (WHIL) team. The villagers collect their drinking water from streams containing an unhealthy amount of bacteria because the local municipality provides no reliable clean water supply to the area. To help address this problem, we split our team into two groups – one concentrated on constructing a large slow-sand filter for the villages while the other ran a water and health education program for children ages seven to twelve in order to engage community members in the project.

While in Africa, we were primarily responsible for running the Clean Water Camp for the children and building an online message board for the schools and villagers to use for mass communication. The Clean Water Camp was a huge endeavor. We wrote lesson plans for the two-week camp and worked with our South African University of Venda partners to translate them into Tshivenda (the local language). In the classroom, our bi-national team worked to teach the forty-one children, who were chosen by their teachers as their classes’ leaders, about things like the design of a slow-sand filter and germ theory. We were able to obtain a microscope so the students could see the bacteria that lived in the water they drank and were always impressed with the learners’ enthusiasm – raising their hands and snapping their fingers wildly so that we would call on them. The children would literally start to jump out of their chairs if we went too long without letting them answer a question.

From the start of the project, we encountered various problems such as communicating messages to a village where there is no electricity and few individuals are literate, working in a village where two rivaling chiefs battled for authority over the project, and improvising during construction due to a lack of resources. Despite these challenges, however, our project was successful in many ways and taught us a lot about development and politics in the process. Though the creation of physical structures, like the slow-sand filter, may be necessary for development projects to succeed, such goals do not operate independent of education and community capacity. Community members need a sufficient supply of clean water, but in order to ensure the solution is sustainable, they need to also understand how the system functions, why it is necessary, and what their roles are within that system. In this way our education program and others like it allow residents to stay involved and invested in the endeavor, making education a crucial element in development projects. During our lessons, the children talked about building their own filters for their families and one boy even wrote a letter to the municipality, asking them to improve the availability of clean water. During our future work with this project, we hope to see these sparks of potential grow into a strong foundation of knowledgeable leadership within the community.

For more information, please visit our project blog: http://www.thewhilimpoporeport.blog.com/
Global Ingenuity 21

In May 2010, the first ever Volkswagen-sponsored Global Ingenuity 21 (GI21) program was launched. Our group of 17 Rodman Scholars, in conjunction with six students from the Technische Universität Braunschweig, met in Braunschweig, Germany to engage in a cross-cultural engineering think tank. The think tank was focused on developing a solution to a question faced to us by Volkswagen’s Electronics Research Laboratory: “How can information from the Internet be safely transmitted to a driver?”

After several brainstorming sessions and many attempts at breaking down such a broad question, we eventually arrived at the concept of an Environmentally-Conditioned Information Parsing System (ECIPS), which we presented to Volkswagen at the conclusion of the ten day think tank. Through ECIPS, we proposed that internet data could be fed to a driver in “sips” which would be filtered based on a set of personal preferences and on geo-spatial data provided by the car’s physical surroundings at any given moment. Our environmentally-dependent system not only increased the safety of the driver, but also used the Internet to link the car to its physical location in a novel way.

We spent a few days in Dresden during the think tank, and following the final presentation to Volkswagen, we traveled to Berlin for several additional days. Our experience tackling an engineering design problem in a cross-cultural setting re-defined engineering for us in ways that we could not have anticipated when entering the program. All of us became more comfortable with the chaos that can so easily ensue when a large group of people from different backgrounds, of varying skill sets, and of diverse mindsets tackle an extremely general problem. We flew home from Germany much closer with each other, with changed perspectives, and with countless indescribable memories!

Catching the Trade Winds: A Tale of Four Study Abroad Programs

Mark Twain once wrote, “Twenty years from now, you will be more disappointed by the things that you didn’t do than by the ones you did. So throw off the bowlines. Sail away from the safe harbor. Catch the trade winds in your sails. Explore. Dream. Discover.”

It is this passion for exploration that has motivated me to study abroad. Some might even say I have become addicted to it. I have integrated four education abroad programs into my undergraduate experience – the London School of Economics Summer School, a January term in Argentina, a semester at the University of Hong Kong, and most recently, the Rodman Global Ingenuity 21 Program.

I am particularly lucky to have been able to incorporate a full semester exchange into my undergraduate education. Living in a foreign city, especially one as metropolitan and diverse as Hong Kong, was an exhilarating, fulfilling experience. My notions of communication, education and globalization were challenged. I was forced outside my comfort zone, and in doing so, developed a better sense of self. There is no doubt that both my academic path and extracurricular involvement at the University has been shaped by education abroad.
Upon return to classes in the fall of 2010, Reed Wilson, Matt Jungclaus, and Jamie Harris, with the help of Professor Dana Elzey, started a one credit course to foster involvement in RodSquad. Matt, Jamie and Reed started the semester teaching basic principles of home energy and the auditing process at weekly lectures. About halfway through the semester, the class moved into the field doing actual audits. The first audit was completed by Jamie Harris and was an audit of a local church. Following the initial audit, RodSquad has done numerous energy reviews for local homeowners. Multiple full audits are being scheduled for the coming weeks, and RodSquad is excited to become more involved in the Charlottesville community.

Through the support of a grant from Lockheed Martin, Rodman Scholars have undertaken several student-organized projects to explore ways of incorporating sustainable practices into our everyday lives. Among these projects are RodSquad, a home energy auditing team; Green Playgrounds, a group designing a renewable energy producing playground for a local elementary school; and the “Engineering a Sustainable World” lecture series, a student organized speaker series in which university faculty discussed various social and scientific aspects of sustainable practices.
As the fall 2010 semester comes to a close, the final Green Playground project is about to be implemented. A new display board with a light bulb will be completed. Once that is finalized, the final product will be delivered to Greer Elementary School for students to use and learn from. The project group is interested to see how the children react to and learn from the educational, electricity generating bike. The Green Playground project has been a tremendous learning experience, and the group believes that the students at Greer Elementary will greatly benefit from the use of the new playground.

Amongst the pressing global issues of today’s world, the term “sustainability” is often highlighted in reference to alternative energy sources, developing economies, product development and more. With the Lockheed Martin grant, the Rodman Scholars organized a series of lectures aiming to expose students to the various meanings and purposes of sustainability, particularly in relation to engineering under the growing strains on environmental resources today. The lecture series was offered as a 1-credit seminar for Rodman Scholars and consisted of four lectures. The “Engineering a Sustainable World” lecture series began by exposing students to sustainability on the small local scale at the University of Virginia. The third and fourth lectures then focused on larger-scale sustainability, both through explaining the environmental processes important in considering sustainable solutions and through discussing the future of sustainable engineering.
PuzzleCast: Design Project Becomes Framework for Business Idea

By: Daniel Amante, Kelly Anderson, Amanda Harton, and Clara Tran (BME ‘12)

Fact: The average American will be immobilized at least twice during their lifetime. While only typically in a cast for 6-8 weeks, it takes a full 8-12 months to return to full strength. The muscles that are restricted during the injury lose significant mass during treatment, requiring physical therapy after the cast has been removed. Atrophy is the silent kicker at the end of a broken bone. The cast finally comes off, but the limb is weak, sensitive to injury, and inflexible. The problem is caused only by the method of treatment and more than triples time to full recovery. Unfortunately our design team had already well exceeded that average of two immobilizations by the time we all turned 20. That’s why when we were asked to find a biomedical problem and spend a semester trying to solve it, atrophy during immobilization was the obvious choice.

We found that broken bones don’t need to be immobilized for two months to heal properly. Most fractures need about two weeks before the bone has regenerated enough to provide a stable structure at the site of the break. If it only takes two weeks before you can begin to move your arm, why have a full arm cast for eight weeks? There really is no medical reason to keep the arm immobilized, so we thought to slowly open up range of motion during treatment to help minimize atrophy. From this project grew what we like to call the PuzzleCast, a modular cast design which we hope solves the problems associated with traditional casts. Composed of a completely elastic thermoplastic material, our design can easily be customized to each patient, providing added stability and comfort during immobilization. Our modular design lets the physician remove components of the cast to increase motion in individual degrees of freedom. We believe that the PuzzleCast can greatly reduce the effects of atrophy while improving overall fracture healing and reducing the cost of care.

For the past year, we have worked to test and improve our prototype, as well as begin to develop a business plan and compete for funding. Our initial testing has shown that we can successfully immobilize a forearm as well as a traditional fiberglass cast, and can open up individual degrees of freedom while keeping others constrained. We continued to pursue our idea through Advanced Design in BME as an independent design project. We have filed for a provisional patent and are working through University of Virginia Patent Foundation to identify companies who want to license this technology. Most recently, we also presented our PuzzleCast concept during the SEAS Entrepreneurial Concept Competition, placing 2nd out of 36 teams of undergraduate students, graduate students, professors, and alumni.

Aero Research at Rolls-Royce

By: Rourke Wilner (Aerospace ’12)

Over the Summer of 2009, I had an internship at Rolls-Royce North America in Indianapolis. I worked in the Combustion and Aerothermal Design Department, doing combustor design and exhaust analysis. I would receive what was called “cycle data” from the testing departments, describing the characteristics of different engines when using varying temperatures and fuel flows. Using this data and other empirical relationships, I determined the optimal combustor size, shape and fuel richness. At the end of my internship, a portion of my work was included in a proposal to the FAA.

Government Repression and Online Advertising?

Rodmans commonly explore research topics of pressing societal significance. Ian Davey, CS ‘10, describes a computer system that he worked on in the following way: “Suppose you wish to update your Facebook or Twitter organizing a protest, but the repressive government you’re protesting is filtering Internet traffic. You could use extremely weak encryption such that it takes your friend just a few seconds to break, but it becomes impossible or at least prohibitively expensive for the authority to break a million of them being posted at any given moment. Such a system could also have privacy applications in resisting the automated data-mining used in targeted online advertising.”
With the sustainability grant from Lockheed Martin, the Rodman Program was able to launch its first Sustainability Research Grant program. The program awarded five grants to fund research projects exploring a subject related to sustainability. The grant recipients are profiled below.

Kathryn Strobel was awarded a grant for her project titled, “Enhancing a Sustainable Groundwater Remediation Technology.” Kathryn will investigate the potential of bacterial chemotaxis for improving bioremediation of contaminated ground water sources. According to Kathryn, “Bioremediation, using bacteria to clean up contaminated ground water, offers many advantages over current methods but is currently limited by the inability to effectively deliver the microorganisms to the source of contamination.”

Eric Schneiter, Madison Luce, Nicholas Montaperto, and Brett Keeler are working with Professor Robert Ribando of the Mechanical Engineering Department and Ken Marino of the STS department. Working off an idea from an entrepreneur in California, they began to work on a solar capture project, but quickly learned that one of the biggest problems of applications of solar power to commercial applications is the inconsistency of energy production, especially on cloudy days, where solar power generation can be intermittent. The team saw the need for storage of energy during periods of peak production, so that the surplus energy could be used during periods of clouds or low energy generation.

Celine Heckel-Jones and her team members - Robert Arthur, Michael Downey, and Nathaniel Farrar - are working on a project to assess local stormwater management designs. Their project will be the first in the Virginia Piedmont area to evaluate stormwater management techniques and directly quantify their impact on sustainability beyond initial implementation. Faculty advisor Professor Joanna Curran was enthusiastic about the project: “There is very little monitoring of BMPs, Best Management Practices [such as these bioswales]...Things are put in, but no one ever goes back to see if they are reducing the loading of the nutrients. Everyone just assumes it works. We want to quantify what’s going on - not just say that it’s great, but why it’s great, and how much it’s actually improving things.”

Brian Tison will be studying a new type of lubricants which will greatly increase wind turbine efficiency. Using high-pressure carbon dioxide and synthetic organic compounds, these new gas expanded lubricants will not only improve heat dissipation but also extend the lives of the gears and bearings, reducing turbine maintenance costs and making wind power more financially viable. Tison and his advisor, Andres Clarens (CE), plan to use the grant to build a gearbox with which they may test the gains in energy efficiency made by using the new lubricants.

Matthew Aronson’s research will involve the design and evaluation of novel solid acid catalysts for the extraction and transesterification of algae oil to produce biodiesel in a single-step process. Aronson’s idea for the catalyzed conversion of algae oil was based on work done by researchers at the Tokyo Institute of Technology with cellulose. The cellulose bond breaking process is typically done with expensive cellulase enzymes, which is a major economic drawback of cellulosic fuels as sustainable renewable energy sources. However, the researchers from Tokyo were able to use solid acid catalysts to hydrolyze cellulose. This simple hydrolysis process involves mixing an aqueous solution of the solid carbon catalyst and cellulose in a well-stirred reactor. In another paper by this group, it was found that similar solid acid catalysts demonstrated high activities and yield in the esterification of oleic acid and stearic acid. The goal of Aronson’s work will be to build on the research done at the Tokyo Institute of Technology with cellulose, by applying the principles of their solid acid catalysts to simultaneously break down the algae walls and convert the oil to biodiesel.
When I got to U.Va., I had no idea what I wanted to be involved in. Like most first years, I went to the Student Activities Fair and put my name on about ten different lists. Unfortunately, I didn’t really love anything I signed up for. Then, by chance, I met up with a friend from high school who told me about Alternative Spring Break (ASB)—an organization that sent students around the country and world to do service over spring break. I was intrigued, and decided to apply.

My first ASB trip to Barrackpore, Trinidad. It took some convincing for my parents to let me get on a plane with twenty-one other students and spend a week in a foreign country they knew very little about. But eventually, they gave in, and I spent my first college spring break in Trinidad. We stayed in a traditional Trinidadian home, ate local food, and spent the days teaching in schools and playing with children in orphanages. We spent several days at the Lady Hochoy School, a school for children with disabilities. This was a rare occurrence in Trinidad, as most children with disabilities were hidden from the world because their families were ashamed. I came back from this trip knowing that working with others and helping those in need was something I was very passionate about.

The spring of my second year, I went to the Dominican Republic. My group lived at an orphanage in the town of Jaibon that was home to twenty-five boys ranging in age from four to eighteen. The Dominican Republic is known to have the worst education system of all Spanish-speaking countries. Children are only required to attend school for a few hours each day, and teachers have very few resources. During the day, we were bused to a local school to teach English. In the morning, I taught a class of 5th graders, and in the afternoon a class of 2nd graders. In the evenings, and during our lunch breaks between teaching sessions, we played with the boys at the orphanage. While I speak very little Spanish, we always found a way to communicate. Our activities with them ranged from playing sports, to reading books, to helping them build kites (my personal favorite activity).

Through my trip to Trinidad, I found Alpha Phi Omega (APO), a co-ed service fraternity on Grounds. As a brotherhood, we spend thousands of hours each semester serving the University and the Charlottesville community. We have a project every Saturday morning from 8:30 am to noon. Our projects vary from week to week, but include building, cleaning, painting, and helping at a local food bank. In addition to these projects, we have smaller projects throughout the week called midweeks. They are usually more people-focused, and include bingo with the elderly, playing with kids in after school programs, and picking up food from grocery stores and coffee shops to deliver to the Salvation Army. This semester I am leading my favorite midweek: Barrett Early Learning Center. Every Thursday we go to the preschool and play with the kids outside (or inside if it’s rainy), and give the teachers a much needed break from the craziness that comes with spending the entire day with three and four year olds.

Edmund Burke once said, “Nobody made a greater mistake than he who did nothing because he could do only a little.” I would not say that I am changing the world with the service I do. Rather, I am making small changes in the lives of those in my community and, sometimes, those I am lucky enough to visit.
The First Year Experience

First year Rodman Scholars are presented with many unique bonding and learning opportunities. Rodmans live alongside other Rodman and Echols scholars in the honors dorms, extending the honors experience beyond the classroom. In the classroom, ENGR 1410, the Rodman section of the first year Intro to Engineering class, provides a personal opportunity to learn what it means to be an engineer and is the primary opportunity for the new Rodman Scholars to get to know each other. The professor, Dana Elzey, stresses a project-based approach to learning key engineering concepts. Whereas students in traditional classes learn material and are then tested, students in 1410 engage in challenging engineering design group projects and learn through the process. For example, the Problem Identification and Conceptual Solution project assigns a broad prompt and requires each group to identify the “real problem” and generate a solution through application of the engineering design process. Students extensively research the topic, such as land mine casualties or recycling challenges, and present their findings of the “real problem” and their suggested conceptual solution to the class. As a whole, the class prepares the Rodmans for their coming semesters as SEAS students and their engineering careers beyond.

Rodman Council: Student Governing Board

Rodman Council develops new program initiatives, plans program events, and works with faculty to expand the Rodman curriculum. All academic and social functions of the Rodman program are executed by Council. Currently the council is composed of the following members:

- Kelly Anderson (BME ’12), President
- Manya Garg (ChE ’12), President
- Reed Wilson (EE ’12), Treasurer
- Kate Geberth (ME ’12), Secretary
- Liz Dobrenz (BME ’13), Networking Chair
- Carolyn Pelnik (ChE ’13), Networking Chair
- Reed Wilson (EE ’12), Treasurer
- Kate Geberth (ME ’12), Secretary
- Liz Dobrenz (BME ’13), Networking Chair
- Carolyn Pelnik (ChE ’13), Networking Chair
- Jessica Ungerleider (BME ’13), Academic Affairs Chair
- Daniel Amante (BME ’12), Social Chair
- Ashley Samay (SE ’13), Social Chair
- Cari Bergner (ChE ’13), Advising Chair
- Kareem El-Gohary (Aero ’12), Estud Representative
- Rourke Wilner (Aero ’12), Estud Representative
- Adwait Mane (ME ’13), Media Coordinator
- Roy Hanna (SE ’12), New Programs Coordinator

Bo Qin (BME ’13), Entrepreneurship Chair
LeeAnn Li (BME ’13), Research Coordinator
Chris Higby (EE’11), 4th Year Representative
Hannah Meredith (BME ’12), 3rd Year Representative
Zhousong Wang (ME ’12), 3rd Year Representative
Emma Winstead (BME ’12), 2nd Year Representative
Matt Jenny (’14), 1st Year Representative
Tristan Jones (’14), 1st Year Representative
Ellen Zhong (’14), 1st Year Representative

Several first year Rodmans work on an STS project in Clark Library
A few first year girls at a Rodman picnic
Several members of RodCouncil on the lawn
My name is Amanda Ray, and I’m a second-year Rodman scholar studying Computer Science. In October of this year, I was lucky enough to fly out to California to tape the 2010 Jeopardy! College Championship. My journey started in February, when I took the online test at my grandmother’s behest. In June, I took another test and participated in a mock round of game-play... and then the real waiting began. It wasn’t until mid-September that I was notified of my impending participation in the tournament.

The entire two-week tournament is shot in just two days, with all of the quarterfinal (that is, first-round) matches taped on the first day. I was randomly drawn to be in the last game of the day, and to avoid bias, I couldn’t see any of the games taped prior to mine. The half hour went by in a flash, and I was lucky enough to get categories including “French Anatomy Quiz” and “California Girls.” At the end of the day, I ended up coming in second to Sam Spaulding from Yale University. I can say, however, that I wound up with $5,000, a Wii (and the Wii Jeopardy! game), and fourteen great friends I never would have had the opportunity to meet otherwise.

What Is a Rodman on Jeopardy!?
By: Amanda Ray (CS ’13)

While the Engineering School and marching band don’t seem to have much in common, they share that they are both more of a lifestyle than a casual commitment. Three of us love being in the Cavalier Marching Band and find our practices and performances a refreshing complement to our technical classes. Second year Ian Edwards plays trumpet, first year Cameron Louttit plays the saxophone (and even had a solo in his first season), and I, Lacey Williams, play the clarinet. We love being part of these two close communities that have really defined our time so far at U.Va. A few days ago when I forgot my clarinet in Thornton Hall and Ian brought it to me at band practice, I was especially grateful to have another Rodman around at band! Although marching band can be a time-consuming activity, the thrill of performing at halftime and supporting our team through the thick and the thin make balancing time between band and academics absolutely worth it. Go Hoos!

A Balancing Act: Cavalier Marching Band and E-School
By: Lacey Williams (BME ’13)